RIGOL Calibration Guide

DG1022 Function/Arbitrary Waveform Generator

Oct. 2010 RIGOL Technologies, Inc.

Guaranty and Declaration

Copyright

© 2010 RIGOL Technologies, Inc. All Rights Reserved.

Trademark Information

RIGOL is a registered trademark of **RIGOL** Technologies, Inc.

Notices

- **RIGOL** products are protected by patent law in and outside of P.R.C.
- **RIGOL** reserves the right to modify or change parts of or all the specifications and pricing policies at company's sole decision.
- Information in this publication replaces all previously corresponding materials.
- **RIGOL** shall not be liable for losses caused by either incidental or consequential in connection with the furnishing, use or performance of this manual as well as any information contained.
- Any part of this document is forbidden to be copied or photocopied or rearranged without prior written approval of **RIGOL**.

Product Certification

RIGOL guarantees this product conforms to the national and industrial standards in China. International standard conformance certification is in progress.

Contact Us

If you have any problem or requirement when using our products, please contact **RIGOL** or your local distributors, or visit: www.rigol.com

Contents

1	Calib	ration Instruction 1-1
	1.1	Calibration Time Interval1-1
	1.2	Recommended Adjustments1-1
	1.3	Calibration Time1-1
	1.4	Calibration Security1-1
	1.5	Basic Calibration/Adjustment Procedures1-2
	1.6	To Stop the Calibration1-3
2	Testi	ng Devices and Notice 2-1
	2.1	Testing Devices
	2.2	Testing Notice
3	Calib	oration Process
	3.1	Self-test
	3.2	Frequency (Int) Adjustment
	3.3	CH1 AC Amplitude Adjustment
	3.4	CH1 Offset DAC
	3.5	CH1 Low Frequency Flatness Adjustment
	3.6	CH1 Output Impedance Adjustment
	3.7	CH1 0 dB Range Flatness Adjustment 3-12
	3.8	CH1 +10 dB Range Flatness Adjustment
	3.9	CH1 +20dB Range Flatness Adjustment
	3.10	CH2 AC Amplitude Adjustment
	3.11	CH2 Offset DAC
	3.12	CH2 Low Frequency Flatness Adjustment
	3.13	CH2 Output Impedance Adjustment
	3.14	CH2 0 dB Range Flatness Adjustment
	3.15	CH2 +10 dB Range Flatness Adjustment
	3.16	Frequency (Ext) Adjustment
	3.17	Phase Adjustment
4	To Sa	ave the Calibration Data 4-1
5	To R	estore Initial Calibration Value
6	Calib	oration Prompting Messages

1 Calibration Instruction

1.1 Calibration Time Interval

Regular calibration should be performed on your instrument according to your measurement accuracy requirement. A one-year calibration time interval can fulfill most of your applications, a calibration time interval longer than one year can not ensure the accuracy.

1.2 Recommended Adjustments

No matter how long is your calibration time interval, **RIGOL** recommends that you perform complete readjustment within the calibration time limit, which can ensure the performance of the signal generator until the next calibration.

1.3 Calibration Time

The signal generator can perform auto calibration under the control of the PC. A complete calibration and verification test under the control of the PC takes about 30 minutes if the instrument has already been warmed up (refer to **"Testing Notice**"). It takes about 2.5 hours if you use the recommended testing instruments to adjust the instrument manually. **Note that this manual only introduces manual calibration.**

1.4 Calibration Security

The Calibration password is used to prevent accidental and unauthorized calibration of the signal generator. The instrument is encrypted when you use it for the first time and you need to enter the correct password to decrypt the signal generator to perform calibration.

Press \bigcirc Test \rightarrow PassWd to input the correct password and the system displays **``The instrument now is UNSECURED**''. At this point, SecOn switches to SecOff as shown in the figure below.

Utility	High Z			
The instrument now is UNSECURED				
Test Info	PassWdSecOff, Cal 📔 🖃			
Figure 1-1 In	put the Calibration Passwor			

The password is set to "12345" when the signal generator is deliveried from the factory. This password is stored in the non-volatile memory and will not change at power-off or after remote interface reset.

1.5 Basic Calibration/Adjustment Procedures

The recommended procedures of instrument calibration are presented below. This is only a general description of a complete calibration and detailed operations will be presented in "**Calibration Process**".

- 1. Read the "Testing Notice".
- 2. Decrypt the signal generator (refer to "Calibration Security").
- 3. Press Cal (refer to Figure 1-1) to enter the calibration starting menu.

Utility	High Z
	1
Step Start	Ston

Figure 1-2 Calibration Starting Menu

Table 1-1 Calibration Starting Menu

Menu	Description		
Step	Select the step of the calibration operation		
	to be performed.		
Start	Start to perform the calibration step.		
Stop	Stop the calibration step and return to the		
	previous menu.		

- **4.** Select Step and use the knob or keyboard to input the calibration step and the default is "1". If only the specified N step of the calibration is needed, input the desired calibration step.
- **5.** Select Start to open the calibration parameter setting menu.

Menu	Description		
Step	Select the step of the calibration operation to		
	be performed.		
Para	Press this key and input the measured value.		
Enter	Finish the value input of the current step and enter the next step.		

Table 1-2 Calibration Parameter Setting

- **6.** The signal generator displays the parameters currently need calibration together with their default output signal values. To finish a step of calibration, you only need to read the reading on the testing instrument and press Para to input the reading. Then, the signal generator will adjust automatically.
- 7. Press Enter and the instrument enters the next calibration step automatically.

Тір

Select rightarrow in the "Calibration Parameter Setting" menu to cancel the current calibration. Select Stop in the "Calibration Starting" menu to stop the calibration. The instrument will be encrypted automatically after the calibration finishes.

1.6 To Stop the Calibration

You may need to stop the calibration during the calibration process and you can power off the instrument or press any of the other function keys at the panel to stop the calibration at any time.

You need to perform the calibration again if the instrument is powered off during the calibration. The calibration data will be stored in the internal memory if you press any of the other function keys to stop the calibration and you can re-enter the calibration interface to execute other calibration steps. The signal generator will store the calibration constants to the Flash only after you execute the **"To Save the Calibration Data"** operation.

Notice

If you stop the calibration when the signal generator is writing the calibration constant to the Flash, you may lost all the calibration constants and you need to perform all the calibrations again.

2 Testing Devices and Notice

2.1 Testing Devices

The testing devices recommended to be used to perform the calibration are as shown in the table below. If you do not have the specified device, use alternative testing devices with the same accuracy.

Device	Specifications	Recommended Model	Usage*
Oscilloscope	Bandwidth: 300 MHz Sample Rate: 2 GSa/s	RIGOL DS1302CA	Р, Т
Digital Multimeter (DMM)	AC Volts (True-RMS, AC Coupled) Accuracy: ±0.06% (300 kHz) DC Volts Accuracy: 0.0015% Resistance Accuracy: 0.002%	Agilent 34401A	Р, Т
Frequency Counter	Accuracy: 0.1 ppm	Agilent 53131A	Р, Т
Power Meter	Absolute Accuracy: ±0.02dB (log) or ±0.5% (linear) Relative Accuracy: ±0.04dB (log) or ±1.0% (linear)	Agilent E4418B	Р, Т

Note*: P= Performance Verification, T= Troubleshooting.

2.2 Testing Notice

To get the optimum effect, all the test steps must comply with the following advices:

- **1.** Make sure the temperature of the environment is between 18°C and 28°C. The calibration should be done in 23°C±1°C in ideal situation.
- **2.** Make sure the relative humidity of the environment is lower than 80%.
- 3. Make sure the instrument has been working continuously for 1 hour.
- **4.** The cable used in the test should be as short as possible and the impedance of the cable should meet the requirement.
- **5.** Only use RG-58 or similar 50 Ω cables.

3 Calibration Process

The calibration process contains 17 items (3.1 to 3.17). When the calibration begins, you can choose to start from any of the items but the steps within each single item must be performed in sequence.

Channel	Calibration Steps	Name of the Calibration Items		
CH1&CH2	1	Self-test		
	2~3	Frequency (Int) Adjustment		
CH1	4~22	AC Amplitude (high-impedance) Adjustment		
	23~35	offset DAC		
	36~57	Low Frequency Flatness Adjustment		
	58~79	Output Impedance Adjustment		
	80~89	0 dB Range Flatness Adjustment		
	90~99	+10 dB Range Flatness Adjustment		
	100~109	+20 dB Range Flatness Adjustment		
CH2 304~319		AC Amplitude (high-impedance) Adjustment		
	323~333	offset DAC		
	336~350	Low Frequency Flatness Adjustment		
	355~373	Output Impedance Adjustment		
	380~389	0 dB Range Flatness Adjustment		
	390~399	+10 dB Range Flatness Adjustment		
CH1&CH2	280~281	Frequency (Ext) Adjustment		
	285~293	Phase Adjustment		
	254	Save the calibration data		
	255	Restore the initial calibration value		

Table 3-1 Calibration Steps Preview

3.1 Self-test

The first step of the calibration is self-test which is used to check whether the signal generator is working normally.

Table 3-2 Self-test Step

Step	Description						
1	Perform	self-test.	The	main	output	is	disabled
	automatically during the self-test.						

2. To continue the calibration, the instrument must be repaired if the self-test of the signal generator fails.

3.2 Frequency (Int) Adjustment

The signal generator stores a frequency calibration constant to make sure that the output is 10 MHz.

1. Set the scale accuracy of the frequency counter as 0.1 ppm and its input impedance as 50Ω (connect an external 50Ω terminal if your frequency counter does not have a 50Ω input impedance). The connecting method is as shown in the figure below.

Figure 3-1 Frequency (Internal Timebase) Adjustment Connection

2. Use the frequency counter to measure the frequency of the output signal.

Table 3-3 Frequency	(Internal	Timebase)	Adjustment	Steps
---------------------	-----------	-----------	------------	-------

Ex	pected Value	Description	
Step	Frequency	Amplitude	
2	<10 MHz	1 Vpp	Output frequency is slightly less than 10 MHz (e.g. 9,999,945.73 Hz)
3 ^[1]	ENDSTEP CA	L FREQ (Fre	equency adjustment finishes)

Note^[1]: this step is only for display and you need not to input any value. Press Enter to enter the next step.

3. Press Para and use the keyboard on the panel to input the measurement value.

3.3 CH1 AC Amplitude Adjustment

AC amplitude adjustment is used to adjust the amplitude accuracy of the AC output and needs to calibrate all the attenuation channels with high output impedance. The gain coefficient is obtained through two measurements (first measure the positive level output from the DAC and then measure the negative level output from the DAC). Thus, such steps always appear in pairs.

1. Connect the DMM and signal generator as shown in the figure below.

Figure 3-2 AC Amplitude Adjustment Connection

- **2.** Use the DMM to measure the DC voltage output from the signal generator.
- **3.** At the end of each step, select Para to input the measurement value following the sequence in the table below.

	Expected Valu	Description	
Step	DC Level	Output	
		Impedance	
4	0.021 Vpp	HighZ	Output of -30 dB range
5	0.038 Vpp	HighZ	Output of -30 dB range
6	0.055 Vpp	HighZ	Output of -30 dB range
7	0.070 Vpp	HighZ	Output of -30 dB range
8	0.13 Vpp	HighZ	Output of -30 dB range
9	0.19 Vpp	HighZ	Output of -30 dB range
10	0.21 Vpp	HighZ	Output of -10 dB range
11	0.40 Vpp	HighZ	Output of -10 dB range
12	0.59 Vpp	HighZ	Output of -10 dB range
13	0.61 Vpp	HighZ	Output of 0 dB range
14	1.26 Vpp	HighZ	Output of 0 dB range

Table 3-4 AC Amplitude Adjustment Steps

15	1.9 Vpp	HighZ	Output of 0 dB range
16	2.1 Vpp	HighZ	Output of +10 dB range
17	4 Vpp	HighZ	Output of +10 dB range
18	5.9 Vpp	HighZ	Output of +10 dB range
19	6.5 Vpp	HighZ	Output of +20dB range
20	13.2 Vpp	HighZ	Output of +20 dB range
21	19.9 Vpp	HighZ	Output of +20 dB range
22 ^[1]	ENDSTEP_CA	ACAMPLITUD	E (AC amplitude adjustment
	finishes)		

3.4 CH1 Offset DAC

Offset DAC is used to calibrate the DC offset of the main DAC output and needs to calibrate all the attenuation channels with high output impedance. The offset coefficient is obtained through two measurements (first measure the positive level output from the DAC and then measure the negative level output from the DAC). Thus, such testing steps always appear in pairs.

1. Connect the DMM and the signal generator as shown in the figure below.

Figure 3-3 Offset DAC Connection

- 2. Use the DMM to measure the DC voltage output from the signal generator.
- **3.** At the end of each step, select Para to input the measurement value following the sequence in the table below.

Table 3-5 Offset DAC Steps

E	Expected Va	lue	Description
Step	DC Level	Output	
		Impedance	
23	+0.025 V	HighZ	Output of -30 dB range
24	-0.025 V	HighZ	Output of -30 dB range
25	+0.0625 V	HighZ	Output of -20 dB range
26	-0.0625 V	HighZ	Output of -20 dB range
27	+0.25 V	HighZ	Output of -10 dB range
28	-0.25 V	HighZ	Output of -10 dB range
29	+0.625 V	HighZ	Output of 0 dB range
30	-0.625 V	HighZ	Output of 0 dB range
31	+2.5 V	HighZ	Output of +10 dB range
32	-2.5 V	HighZ	Output of +10 dB range
33	+6.25 V	HighZ	Output of +20 dB range

34	-6.25 V	HighZ	Output of +20 dB range
35 ^[1]	ENDSTEP C		C (Offset DAC finishes)

 35^[1]
 ENDSTEP_CAL_OFFSETDAC (Offset DAC finishes)

 Note[1]: this step is only for display and you need not to input any value. Press Enter to enter the next step.

3.5 CH1 Low Frequency Flatness Adjustment

Low frequency flatness adjustment is used to adjust the 3 attenuation channels (using elliptical filter, with low passband ripples, applicable to Sine and Square) and the other two amplification channels (using linear phase filter, applicable to Ramp, Noise and arbitrary waveforms) of the signal generator.

1. Set the DMM to measure the Vrms voltage value and connect the instruments as shown in the figure below.

Figure 3-4 Low Frequency Flatness Adjustment Connection

- 2. Use the DMM to measure the Sine waveform output from the signal generator.
- **3.** At the end of each step, select **Para** to input the measurement value following the sequence in the table below.

Outp	ut Sigr	nal of the	Description		
Step	Туре	Output	Frequency	Amplitude	
36	Sine	HighZ	100 Hz	0.56 Vrms	Flatness for 0 dB,
					Linear Phase Filter
37	Sine	HighZ	1 kHz	0.56 Vrms	Flatness for 0 dB,
					Linear Phase Filter
38	Sine	HighZ	10 kHz	0.56 Vrms	Flatness for 0 dB,
					Linear Phase Filter
39	Sine	HighZ	20 kHz	0.56 Vrms	Flatness for 0 dB,
		_			Linear Phase Filter
40	Sine	HighZ	30 kHz	0.56 Vrms	Flatness for 0 dB,
		_			Linear Phase Filter
41	Sine	HighZ	40 kHz	0.56 Vrms	Flatness for 0 dB,

					Linear Phase Filter
42	Sine	HighZ	100 kHz	0.56 Vrms	Flatness for 0 dB,
					Linear Phase Filter
43	Sine	HighZ	100 Hz	1.7 Vrms	Flatness for +10 dB,
					Linear Phase Filter
44	Sine	HighZ	1 kHz	1.7 Vrms	Flatness for +10 dB,
					Linear Phase Filter
45	Sine	HighZ	10 kHz	1.7 Vrms	Flatness for +10 dB,
		_			Linear Phase Filter
46	Sine	HighZ	20 kHz	1.7 Vrms	Flatness for +10 dB,
					Linear Phase Filter
47	Sine	HighZ	30 kHz	1.7 Vrms	Flatness for +10 dB,
					Linear Phase Filter
48	Sine	HighZ	40 kHz	1.7 Vrms	Flatness for +10 dB,
					Linear Phase Filter
49	Sine	HighZ	100 kHz	1.7 Vrms	Flatness for +10 dB,
					Linear Phase Filter
50	Sine	HighZ	100 Hz	5.6 Vrms	Flatness for +20 dB,
					Linear Phase Filter
51	Sine	HighZ	1 kHz	5.6 Vrms	Flatness for +20 dB,
					Linear Phase Filter
52	Sine	HighZ	10 kHz	5.6 Vrms	Flatness for +20 dB,
					Linear Phase Filter
53	Sine	HighZ	20 kHz	5.6 Vrms	Flatness for +20 dB,
		_			Linear Phase Filter
54	Sine	HighZ	30 kHz	5.6 Vrms	Flatness for +20 dB,
		_			Linear Phase Filter
55	Sine	HighZ	40 kHz	5.6 Vrms	Flatness for +20 dB,
		_			Linear Phase Filter
56	Sine	HighZ	100 kHz	5.6 Vrms	Flatness for +20 dB,
		-			Linear Phase Filter
57 ^[1]	ENDS	TEP_CAL	_LOWFREQF	LAT (Low	frequency flatness
	adjust	ment fini	ishes)	-	

3.6 CH1 Output Impedance Adjustment

Output impedance adjustment is used to adjust the output impedance. The measurement of the output impedance constant uses the distortion filter of the signal generator and all the six attenuation/amplification channels of the signal generator.

1. Set the DMM to use AC voltage for measurement. The (CH1) output terminal of the signal generator is connected to the AC voltage intput terminal of the DMM via a 50 Ω impedance matcher. The connecting method is as shown in the figure below.

Figure 3-5 Output Impedance Adjustment Connection

- **2.** Use the DMM to measure the output voltage of the signal generator according to each of the output measurements in the table below. The internal resistance of the signal generator is obtained indirectly through the voltage measurement and the expected measurement value should be 50 Ω .
- **3.** At the end of each step, select Para to input the measurement value following the sequence in the table below.

Step	Expected Value	Description (Signal Generator Output)
58	50 Ω	0.038 V
59	50 Ω	0.125 V
60	50 Ω	0.375 V
61	50 Ω	1 V
62	50 Ω	1.5 V
63	50 Ω	3 V
64	50 Ω	4.5 V

Table 3-7 Output Impedance Adjustment Steps

65	50 Ω	6.5 V		
66	50 Ω	11 V		
67	50 Ω	0 V		
68	50 Ω	17 V		
69	50 Ω	8.5 V		
70	50 Ω	5.5 V		
71	50 Ω	3.25 V		
72	50 Ω	2.25 V		
73	50 Ω	1.5 V		
74	50 Ω	0.75 V		
75	50 Ω	0.5 V		
76	50 Ω	0.187 V		
77	50 Ω	0.0625 V		
78	50 Ω	0.019 V		
79 ^[1]	ENDSTEP_CAL_IMPENDANCE (Output impedance			
	adjustment finishes)			

3.7 CH1 0 dB Range Flatness Adjustment

1. Connect the power meter and signal generator as shown in the figure below.

Figure 3-6 Output Flatness Adjustment Connection

- **2.** Use the power meter to measure the dBm value of the output signal of the signal generator.
- **3.** At the end of each step, select Para to input the measurement value following the sequence in the table below.

Outp	ut Sigr	nal of the	Description		
Step	Туре	Output	Frequency	Amplitude	
80	Sine	50 Ω	100 kHz	2 dBm	Flatness for 0 dB, Linear
					Phase Filter
81	Sine	50 Ω	500 kHz	2 dBm	Flatness for 0 dB, Linear
					Phase Filter
82	Sine	50 Ω	1 MHz	2 dBm	Flatness for 0 dB, Linear
					Phase Filter
83	Sine	50 Ω	5 MHz	2 dBm	Flatness for 0 dB, Linear
					Phase Filter
84	Sine	50 Ω	10.1 MHz	2 dBm	Flatness for 0 dB, Linear
					Phase Filter
85	Sine	50 Ω	11.1 MHz	2 dBm	Flatness for 0 dB, Linear
					Phase Filter
86	Sine	50 Ω	15.1 MHz	2 dBm	Flatness for 0 dB, Linear
					Phase Filter
87	Sine	50 Ω	18.1 MHz	2 dBm	Flatness for 0 dB, Linear
					Phase Filter
88	Sine	50 Ω	20.1 MHz	2 dBm	Flatness for 0 dB, Linear

Table 3-8 0 dB Range Flatness Adjustment Steps

					Phase Filter
89 ^[1]	FNDS	TFP CAL	0dBFLAT (0	dB range fla	tness adjustment finishes)

BY¹ | ENDSTEP_CAL_ 0dBFLAT (0 dB range flatness adjustment finishes) Note^[1]: this step is only for display and you need not to input any value. Press Enter to enter the next step.

3.8 CH1 +10 dB Range Flatness Adjustment

- 1. Connect the power meter and signal generator as shown in Figure 3-6.
- **2.** Use the power meter to measure the dBm value of the output signal of the signal generator.
- **3.** At the end of each step, select Para to input the measurement value following the sequence in the table below.

Out	put Si	gnal of t	he Signal G	Description			
Step	Туре	Output	Frequency	Amplitude			
90	Sine	50 Ω	100 kHz	2 dBm	Flatness for 0 dB, Linear Phase Filter		
91	Sine	50 Ω	500 kHz	2 dBm	Flatness for 0 dB, Linear Phase Filter		
92	Sine	50 Ω	1 MHz	2 dBm	Flatness for 0 dB, Linear Phase Filter		
93	Sine	50 Ω	5 MHz	2 dBm	Flatness for 0 dB, Linear Phase Filter		
94	Sine	50 Ω	10.1 MHz	2 dBm	Flatness for 0 dB, Linear Phase Filter		
95	Sine	50 Ω	11.1 MHz	2 dBm	Flatness for 0 dB, Linear Phase Filter		
96	Sine	50 Ω	15.1 MHz	2 dBm	Flatness for 0 dB, Linear Phase Filter		
97	Sine	50 Ω	18.1 MHz	2 dBm	Flatness for 0 dB, Linear Phase Filter		
98	Sine	50 Ω	20.1 MHz	2 dBm	Flatness for 0 dB, Linear Phase Filter		
99 ^[1]	ENDSTEP_CAL_10dBFLAT (+10 dB range flatness adjustment finishes)						

Table 3-9 +10 dB Range Flatness Adjustment Steps

3.9 CH1 +20dB Range Flatness Adjustment

- **1.** Connect the power meter and signal generator as shown in Figure 3-6.
- **2.** Use the power meter to measure the dBm value of the output signal of the signal generator.
- **3.** At the end of each step, select Para to input the measurement value following the sequence in the table below.

Out	tput si	gnal of t	he signal G	Description				
Step	Туре	Output	Frequency	Amplitude				
100	Sine	50 Ω	100 kHz	2 dBm	Flatness for 0 dB, Linear Phase Filter			
101	Sine	50 Ω	500 kHz	2 dBm	Flatness for 0 dB, Linear Phase Filter			
102	Sine	50 Ω	1 MHz	2 dBm	Flatness for 0 dB, Linear Phase Filter			
103	Sine	50 Ω	5 MHz	2 dBm	Flatness for 0 dB, Linear Phase Filter			
104	Sine	50 Ω	10.1 MHz	2 dBm	Flatness for 0 dB, Linear Phase Filter			
105	Sine	50 Ω	11.1 MHz	2 dBm	Flatness for 0 dB, Linear Phase Filter			
106	Sine	50 Ω	15.1 MHz	2 dBm	Flatness for 0 dB, Linear Phase Filter			
107	Sine	50 Ω	18.1 MHz	2 dBm	Flatness for 0 dB, Linear Phase Filter			
108	Sine	50 Ω	20.1 MHz	2 dBm	Flatness for 0 dB, Linear Phase Filter			
109[1]	109 ^[1] ENDSTEP CAL 20dBFLAT (+20 dB range flatness adjustment finishes)							

Table 3-10 +20 dB Range Flatness Adjustment Steps

3.10 CH2 AC Amplitude Adjustment

AC amplitude adjustment is used to adjust the amplitude accuracy of the AC output and needs to calibrate all the attenuation channels with high output impedance. The gain coefficient is obtained through two measurements (first measure the positive level output from the DAC and then measure the negative level output from the DAC). Thus, such steps always appear in pairs.

1. Connect the DMM and signal generator as shown in the figure below.

Figure 3-7 AC Amplitude Adjustment Connection

- **2.** Use the DMM to measure the DC voltage output from the signal generator.
- **3.** At the end of each step, select Para to input the measurement value following the sequence in the table below.

	Expected Valu	Description	
Step	DC Level	Output	
		Impedance	
304	0.021 Vpp	HighZ	Output of -30 dB range
305	0.038 Vpp	HighZ	Output of -30 dB range
306	0.055 Vpp	HighZ	Output of -30 dB range
307	0.070 Vpp	HighZ	Output of -20 dB range
308	0.13 Vpp	HighZ	Output of -20 dB range
309	0.19 Vpp	HighZ	Output of -20 dB range
310	0.21 Vpp	HighZ	Output of -10 dB range
311	0.40 Vpp	HighZ	Output of -10 dB range
312	0.59 Vpp	HighZ	Output of -10 dB range
313	0.61 Vpp	HighZ	Output of 0 dB range
314	1.26 Vpp	HighZ	Output of 0 dB range

Table 3-11 AC Amplitude Adjustment Steps

315	1.9 Vpp	HighZ	Output of 0 dB range
316	2.1 Vpp	HighZ	Output of +10 dB range
317	4 Vpp	HighZ	Output of +10 dB range
318	5.9 Vpp	HighZ	Output of +10 dB range
319 ^[1]	ENDSTEP_CA	ACAMPLITUD	E (AC amplitude adjustment
	finishes)		

Note[1]: this step is only for display and you need not to input any value. Press Enter to enter the next step.

3.11 CH2 Offset DAC

Offset DAC is used to calibrate the DC offset of the main DAC output and needs to calibrate all the attenuation channels with high output impedance. The offset coefficient is obtained through two measurements (first measure the positive level output from the DAC and then measure the negative level output from the DAC). Thus, such testing steps always appear in pairs.

1. Connect the DMM and the signal generator as shown in the figure below.

Figure 3-8 Offset DAC Connection

- 2. Use the DMM to measure the DC voltage output from the signal generator.
- **3.** At the end of each step, select **Para** to input the measurement value following the sequence in the table below.

	Expected V	/alue	Description
Step	DC Level	Output	
		Impedance	
323	+0.025 V	HighZ	Output of -30 dB range
324	-0.025 V	HighZ	Output of -30 dB range
325	+0.0625 V	HighZ	Output of -20 dB range
326	-0.0625 V	HighZ	Output of -20 dB range
327	+0.25 V	HighZ	Output of -10 dB range
328	-0.25 V	HighZ	Output of -10 dB range
329	+0.625 V	HighZ	Output of 0 dB range
330	-0.625 V	HighZ	Output of 0 dB range
331	+2.5 V	HighZ	Output of +10 dB range
332	-2.5 V	HighZ	Output of +10 dB range
333 ^[1]	ENDSTEP_C	AL_OFFSETDA	AC (Offset DAC finishes)

Table 3-12 Offset DAC Steps

3.12 CH2 Low Frequency Flatness Adjustment

Low frequency flatness adjustment is used to adjust the 3 attenuation channels (using elliptical filter, with low passband ripples, applicable to Sine and Square) and the other two amplification channels (using linear phase filter, applicable to Ramp, Noise and arbitrary waveforms) of the signal generator.

1. Set the DMM to measure the Vrms voltage value and connect the instruments as shown in the figure below.

Figure 3-9 Low Frequency Flatness Adjustment Connection

- 2. Use the DMM to measure the Sine waveform output from the signal generator.
- **3.** At the end of each step, select Para to input the measurement value following the sequence in the table below.

Outp	ut Sigr	nal of the	nerator	Description	
Step	Туре	Output	Frequency	Amplitude	
336	Sine	HighZ	1 kHz	0 56 Vrmc	Flatness for 0 dB,
				0.30 VIIIS	Linear Phase Filter
337	Sine	HighZ	100 Hz	0 56 Vrmc	Flatness for 0 dB,
				0.50 VIIIS	Linear Phase Filter
338	Sine	HighZ	10 kHz	0 56 Vrmc	Flatness for 0 dB,
				0.50 VIIIS	Linear Phase Filter
339	Sine	HighZ	30 kHz	0 56 Vrmc	Flatness for 0 dB,
				0.30 VIIIS	Linear Phase Filter
340	Sine	HighZ	60 kHz	0 56 Vrmc	Flatness for 0 dB,
				0.30 VIIIS	Linear Phase Filter
341	Sine	HighZ	80 kHz	0 E6 Vrmc	Flatness for 0 dB,
				0.50 VIIIS	Linear Phase Filter
342	Sine	HighZ	100 kHz	0.56 Vrms	Flatness for 0 dB,

Table 3-13 Low Frequency Flatness Adjustment Steps

				1	
					Linear Phase Filter
343	Sine	HighZ	1 kHz	1.7.\////////	Flatness for +10 dB,
		-		1.7 VIIIIS	Linear Phase Filter
344	Sine	HighZ	100 Hz	1.7.\///////	Flatness for +10 dB,
		2		1.7 vrms	Linear Phase Filter
345	Sine	HighZ	10 kHz	1.7.\////////	Flatness for +10 dB,
		-		1.7 VIIIIS	Linear Phase Filter
346	Sine	HighZ	30 kHz	1.7.\////////	Flatness for +10 dB,
		-		1.7 VIIIIS	Linear Phase Filter
347	Sine	HighZ	60 kHz	1.7.\/rmc	Flatness for +10 dB,
		-		1.7 VIIIIS	Linear Phase Filter
348	Sine	HighZ	80 kHz	1.7.\/rmc	Flatness for +10 dB,
		-		1.7 VIIIIS	Linear Phase Filter
349	Sine	HighZ	100 kHz	17////	Flatness for +10 dB,
		_		1.7 VIIIS	Linear Phase Filter
350 ^[1]	ENDS	TEP_CAL	_LOWFREQF	LAT (Low	frequency flatness
	adjustment finishes)				

3.13 CH2 Output Impedance Adjustment

Output impedance adjustment is used to adjust the output impedance. The measurement of the output impedance constant uses the distortion filter and all the six attenuation/amplification channels of the signal generator.

1. Set the DMM to use AC voltage for measurement. The (CH2) output terminal of the signal generator is connected to the AC voltage intput terminal of the DMM via a 50 Ω impedance matcher. The connecting method is as shown in the figure below.

Figure 3-10 Output Impedance Adjustment Connection

- **2.** Use the DMM to measure the output voltage of the signal generator according to each of the output measurements in the table below. The internal resistance of the signal generator is obtained indirectly through the voltage measurement and the expected measurement value should be 50 Ω .
- **3.** At the end of each step, select Para to input the measurement value following the sequence in the table below.

Step	Expected Value	Description (Signal Generator Output)
355	50 Ω	0.038 V
356	50 Ω	0.125 V
357	50 Ω	0.375 V
358	50 Ω	1 V
359	50 Ω	1.5 V
360	50 Ω	3 V
361	50 Ω	4.5 V
362	50 Ω	0 V
363	50 Ω	2.25 V

Table 3-14 Output Impedance Adjustment Steps

364	50 Ω	1.5 V		
365	50 Ω	0.75 V		
366	50 Ω	0.5 V		
367	50 Ω	0.187 V		
368	50 Ω	0.0625 V		
369	50 Ω	0.019 V		
370	50 Ω	0 V		
371	50 Ω	2 V		
372	50 Ω	2 V		
373 ^[1]	ENDSTEP_CAL	IMPENDANCE	(Output	impedance
	adjustment fini	shes)		

3.14 CH2 0 dB Range Flatness Adjustment

1. Connect the power meter and signal generator as shown in the figure below.

Figure 3-11Output Flatness Adjustment Connection

- **2.** Use the power meter to measure the dBm value of the output signal of the signal generator.
- **3.** At the end of each step, select Para to input the measurement value following the sequence in the table below.

Outp	ut Sigr	nal of the	Description		
Step	Туре	Output	Frequency	Amplitude	
380	Sine	50 Ω	100 kHz	2 dBm	Flatness for 0 dB, Linear Phase Filter
381	Sine	50 Ω	500 kHz	2 dBm	Flatness for 0 dB, Linear Phase Filter
382	Sine	50 Ω	1 MHz	2 dBm	Flatness for 0 dB, Linear Phase Filter
383	Sine	50 Ω	5 MHz	2 dBm	Flatness for 0 dB, Linear Phase Filter
384	Sine	50 Ω	10.1 MHz	2 dBm	Flatness for 0 dB, Linear Phase Filter
385	Sine	50 Ω	11.1 MHz	2 dBm	Flatness for 0 dB, Linear Phase Filter
386	Sine	50 Ω	15.1 MHz	2 dBm	Flatness for 0 dB, Linear Phase Filter
387	Sine	50 Ω	18.1 MHz	2 dBm	Flatness for 0 dB, Linear

Table 3-15 0 dB Range Flatness Adjustment Steps

					Phase Filter
388	Sine	50 Ω	20.1 MHz	2 dBm	Flatness for 0 dB, Linear Phase Filter
389 ^[1]	ENDS	TEP CAL	0dBFLAT (0	dB range fla	atness adjustment finishes)

3.15 CH2 +10 dB Range Flatness Adjustment

- **1.** Connect the power meter and signal generator as shown in Figure 3-11.
- **2.** Use the power meter to measure the dBm value of the output signal of the signal generator.
- **3.** At the end of each step, select Para to input the measurement value following the sequence in the table below.

Out	put Si	gnal of t	he Signal G	enerator	Description	
Step	Туре	Output	Frequency	Amplitude		
390	Sine	50 Ω	100 kHz	2 dBm	Flatness for 0 dB, Linear Phase Filter	
391	Sine	50 Ω	500 kHz	2 dBm	Flatness for 0 dB, Linear Phase Filter	
392	Sine	50 Ω	1 MHz	2 dBm	Flatness for 0 dB, Linear Phase Filter	
393	Sine	50 Ω	5 MHz	2 dBm	Flatness for 0 dB, Linear Phase Filter	
394	Sine	50 Ω	10.1 MHz	2 dBm	Flatness for 0 dB, Linear Phase Filter	
395	Sine	50 Ω	11.1 MHz	2 dBm	Flatness for 0 dB, Linear Phase Filter	
396	Sine	50 Ω	15.1 MHz	2 dBm	Flatness for 0 dB, Linear Phase Filter	
397	Sine	50 Ω	18.1 MHz	2 dBm	Flatness for 0 dB, Linear Phase Filter	
398	Sine	50 Ω	20.1 MHz	2 dBm	Flatness for 0 dB, Linear Phase Filter	
399 ^[1]	ENDSTEP_CAL_10dBFLAT (+10 dB range flatness adjustment finishes)					

Table 3-16 +10 dB Range Flatness Adjustment Steps

3.16 Frequency (Ext) Adjustment

1. Set the scale accuracy of the frequency counter as 0.1 ppm and its input impedance as 50 Ω (if your frequency counter does not have a 50 Ω input impedance, you need to connect an external 50 Ω terminal). The connecting method is as shown in the figure below. Connect the 10 MHz Out of the frequency counter with the 10 MHz In of the signal generator and the CH1 output terminal of the signal generator with the input terminal of the frequency counter.

Figure 3-12 Frequency (External Timebase) Adjustment Connection

2. Use the frequency counter to measure the output frequency of the signal generator.

Ex	pected Value	Description		
Step	Frequency	Amplitude		
280	<10 MHz	1 Vpp	Output frequency is slightly less than 10 MHz (e.g. 9,999,945.73 Hz)	
281 ^[1]	ENDSTEP CAL FREO (Frequency adjustment finishes)			

Note^[1]: this step is only for display and you need not to input any value. Press Enter to enter the next step.

3. Press Para and use the keyboard on the panel to input the measurement value.

3.17 Phase Adjustment

1. Set the input impedance of the oscilloscope to 50 Ω (if your oscilloscope does not have a 50 Ω input impedance, use external terminal). Connect the two output terminals of the signal generator to two input channels of the oscilloscope respectively. The connecting method is as shown in the figure below.

Figure 3-13 Phase Adjustment Connection

 First, please send the following commands to the signal generator via the remote interface: OUTPUT:LOAD INFINITY OUTPUT:LOAD:CH2 INFINITY APPLY:SIN 1KHZ,5VPP,0 APPLY:SIN:CH2 1KHZ,5VPP,0 OUTPUT:ON

OUTPUT ON OUTPUT:CH2 ON

The signal generator will exit the calibration interface (the previous calibration parameters are still stored in the internal memory) after receiving the above-mentioned commands.

3. Re-enter the calibration interface (press unity → Test → PassWd and enter the password to decrypt the signal generator. Then press Cal → Step). Perform the relative operations following the sequence in the table below and press Para at the end of each step to input the measurement value (A-B).

Step	Description
285	Send the following commands to the oscilloscope via the
	remote interface:
	:TIM:SCAL 0.00000500
	:STOP
	:MEASURE:EDGEP1_X? CHANNEL1——record the
	current A value
	:MEASURE:EDGEP1_X? CHANNEL2——record the
	current B value
	Input the A-B result into the signal generator (in s).
286	The same as 285.
287	The same as 285.
288	The same as 285.
289	The same as 285.
290	The same as 285.
291	The same as 285.
292	The same as 285.
293[1]	ENDSTEP CAL EREC (Frequency adjustment finishes)

Table 3-18 Phase Adjustment Steps

293^{L1J} | ENDSTEP_CAL_FREQ (Frequency adjustment finishes) Note^[1]: this step is only for display and you need not to input any value. Press Enter to enter the next step.

At this point, all the calibration operations are finished.

4 To Save the Calibration Data

Table 4-1 To Save the Calibration Data

Step	Description
254	Perform this step to save the calibration data to the non-volatile
	memory of the instrument after finishing "Calibration Process".

5 To Restore Initial Calibration Value

Table 5-1 To Restore Initial Calibration Value

Step	Description
255	The signal generator has an initial calibration value (empirical
	value, not factory default). Perform this step to restore the default
	calibration value. It is recommended that users perform the
	complete "Calibration Process" to get more accurate output.

6 Calibration Prompting Messages

The following prompting messages may appear during the calibration.

1. Performing Self-Test, Please wait...

The system needs some time to finish the self-test, so please wait patiently.

2. Self-Test Passed.

This message is displayed if the system passes the self-test successfully.

3. The instrument now is UNSECURED.

After the message is displayed to indicate that the correct password has been input, users can perform the calibration operation and at this point, the instrument is unsecured.

4. Performing Calibration, Please wait....

The instrument enters the calibration execution menu to prepare to start the calibration, so please wait patiently.

5. Incorrect secure code, please try again.

Users need to input the secure code to calibrate the signal generator. The entered secure code is incorrect and users need to enter the correct code.

6. Please first complete step**.

If users want to finish the selected calibration step during the calibration of the instrument, they must start from step **.